

REFERENCES

1 Funaoaka, K., Kuroda, Y., Kai, Y. and Kondō, T. (1963) *J. Jpn. Wood Res. Soc.* **9**, 139

2 Kai, Y. (1965) *J. Jpn. Wood Res. Soc.* **11**, 23

3 Kai, Y. and Shimizu, M. (1968) *J. Jpn. Wood Res. Soc.* **14**, 425

4 Kai, Y. and Shimizu, M. (1968) *J. Jpn. Wood Res. Soc.* **14**, 430

5 Takahashi, K. (1981) *J. Jpn. Wood Res. Soc.* **27**, 654.

6 Hatam, N A R and Whiting, D A (1969) *J. Chem. Soc. (C)* 1921

7 Daniels, P., Ertman, H., Nishimura, K. and Norin, T. (1972) *J. Chem. Soc. Chem. Comm.* 246

8 Begley, M. J., Davies, R. V., Henley-Smith, P. and Whiting, D. A. (1973) *J. Chem. Soc. Chem. Comm.* 649

9 Henley-Smith, P. and Whiting, D. A. (1976) *Phytochemistry* **15**, 1285

10 Enoki, A., Takahama, S. and Kitao, K. (1977) *J. Jpn. Wood Res. Soc.* **23**, 579

11 Enoki, A., Takahama, S. and Kitao, K. (1977) *J. Jpn. Wood Res. Soc.* **23**, 587

Phytochemistry, Vol 27, No 5, pp 1552-1554, 1988
Printed in Great Britain

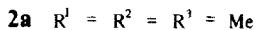
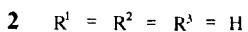
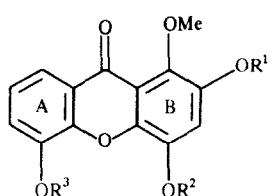
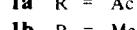
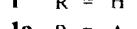
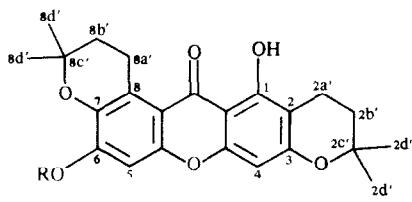
0031 9422/88 \$3.00 + 0.00
Pergamon Press plc

NOVEL XANTHONES FROM *GARCINIA MANGOSTANA*, STRUCTURES OF BR-XANTHONE-A AND BR-XANTHONE-B*

KRISHNAMOORTHI BALASUBRAMANIAN and KRISHNAMOORTHI RAJAGOPALAN

Department of Organic Chemistry, University of Madras, Guindy Campus, Madras, 600 025, India

(Revised received 21 August 1987)







Key Word Index—*Garcinia mangostana*, Guttiferae, BR-xanthone-A, BR-xanthone-B, xanthones

Abstract—The chemical examination of the dry fruit hulls of *Garcinia mangostana* yielded, in addition to known xanthones, two new xanthones, a bis-pyrano xanthone, BR-xanthone-A and 1-methoxy-2,4,5-trihydroxyxanthone, BR-xanthone-B. Evidence of their structures is presented

INTRODUCTION

Garcinia mangostana Linn (Guttiferae) is a tree, fairly widespread in India, Sri Lanka, Burma and known for its sweet fruits called mangosteen. In the ayurvedic system of medicine, the fruit hull of this plant finds wide application, mainly as an anti-inflammatory agent and in the treatment of diarrhoea. In general, xanthones and their derivatives were shown to be effective as an allergy

inhibitor and bronchodilator in treatment of asthma [1]. Antileukemic xanthones have also been isolated from plants belonging to the Guttiferae family [2]. The chemistry of xanthones isolated from various plant families has been reviewed by Sultanbawa *et al.* [3]. We report now the isolation and characterization of two new xanthones from the hulls of *Garcinia mangostana*, in addition to the already reported xanthones—mangostin, gartanins and garcinones [4, 5].

* Part 1 in the series 'Studies on Indigenous Medicinal Plants'

RESULTS AND DISCUSSION

In the literature there appears to be no report on X-ray crystallographic studies on either mangostin or its derivatives. It is with this primary objective in mind, that the investigation of this plant was undertaken. The combined petrol and benzene extracts of the powdered fruit hulls, after careful column chromatography over silica gel (Experimental), afforded a novel xanthone BR-Xanthone-A (**1**) as a low polar material in addition to several other known xanthones. The acetone extract of the defatted hulls, on column chromatography (Experimental) furnished another new xanthone, BR-xanthone-B (**2**).

BR-Xanthone **A** (**1**) was crystallized from petrol-benzene (1:1) as pale yellow needles (mp 181–182°) and was found to have a molecular formula of $C_{23}H_{24}O_6$ (based on the high resolution mass spectrum). It gave all the standard tests for xanthones. Its UV spectrum had bands at 243, 259, 319 nm.

The effect of added sodium acetate, sodium hydroxide and aluminium chloride in the UV spectrum of the parent xanthone was valuable in ascertaining the hydroxylation pattern. The absence of any significant bathochromic shift with sodium acetate indicated the absence of a free hydroxyl group at C-3 of the xanthone nucleus. The IR spectrum showed a strong absorption at 1640 cm^{-1} (hydrogen bonded carbonyl) with a broad band around 3400 cm^{-1} , showing the presence of a hydroxyl group.

The ^1H NMR spectrum (360 MHz) CDCl_3 had a peak at $\delta 13.72$ indicating a chelated hydroxyl group at C-1 or C-8 and a singlet at $\delta 6.36$ for a phenolic hydroxyl which was exchanged with D_2O thus confirming the presence of two free hydroxyl groups in the xanthone (Table 1). The facile formation of a mono-acetate or mono-methyl ether of the xanthone confirmed the presence of a relatively free hydroxyl group. Two singlets were seen in the ^1H NMR spectrum at $\delta 6.77$ and 6.23 and two carbon doublets were observed at $\delta 93.93$ and 100.43 in the ^{13}C NMR spectrum. The INEPT technique in the ^{13}C NMR ($J = \pi/2$) spectrum gave a clear indication of the presence of two CH signals and two Me signals and four CH_2 signals, revealing that the nucleus contained two aromatic CH carbons and two types of methyl group

and four different CH_2 carbons. The INEPT technique of CH^\uparrow ($J = 3\pi/4$) alone confirmed the above fact and it facilitated the assignment of the structure with the help of ^1H NMR data. The molecular formula $C_{23}H_{24}O_6$ entails a double bond equivalent (DBE) of 12. Of these the xanthone nucleus will account for 10 leaving two DBE which can be either two double bonds or two rings. The absence of any vinyl protons or vinyl methyls in the ^1H NMR spectrum as well as the absence of any olefinic carbon in the ^{13}C NMR spectrum clearly indicated that the remaining two DBE can only be accounted for by two rings. The presence of two saturated pyran rings was confirmed by the appearance of four triplets in the ^1H NMR spectrum and four methylene carbon triplets in the ^{13}C NMR spectrum and by the INEPT technique. Benzylic methylene and the aliphatic methylene protons were identified by decoupling studies.

Confirmatory evidence for the structure of BR-Xanthone **A**, was obtained by comparing it with the cyclization product obtained by heating mangostin with hydrogen iodide [6] (mmp, identical IR and ^1H NMR spectra). Yates *et al.* [6] report the formation of two pyranoxanthones from mangostin on refluxing with hydrogen iodide under different conditions. One of these xanthones obtained when pure hydrogen iodide (free of iodine) was used for this reaction was found to be identical with the BR-xanthone **1**. This xanthone was established to have one pyran ring linearly fused and another angularly fused which are rather novel features. Similar naturally occurring saturated pyrano xanthones with one pyran ring are toxyl xanthone [7, 8] and cordato oblongue xanthone [9].

BR-Xanthone **B** (1-methoxy-2,4,5-trihydroxy xanthone, **2**) was obtained as a greenish yellow solid, (mp 308–310°) having the molecular formula $C_{14}H_{10}O_6$ (high resolution mass spectrum). The standard tests confirmed it to be a xanthone. The UV spectrum (EtOH) showed absorptions at 222, 244, 313 and 357 nm. The pattern in the UV spectrum obtained did not correspond with any other known xanthones. The 10 double bond equivalents according to the molecular formula $C_{14}H_{10}O_6$ confirmed that it contained only the xanthone nucleus and no other ring or unsaturation. Hence the formula could be written as $C_{13}H_8O_2-\text{CH}_2\text{OH}$. The ^1H NMR spectrum (360 MHz) showed the presence of a methoxyl group at

Table 1 ^1H NMR spectral data for compounds **1**, **1a** and **1b**

Proton no	δ values		
	1	1a	1b
C-1 OH	13.72 s	13.67 s	13.65 s
H-5	6.77 s	6.70 s	6.63 s
C-6 OH	6.36 s	—	—
H-4	6.23 s	6.14 s	6.14 s
C-6 OMe	—	—	3.8 s
H ₂ -8a'	3.40 t ($J = 2$ Hz)	3.43 t ($J = 2$ Hz)	3.42 t ($J = 2$ Hz)
H ₂ -2a'	2.7 t ($J = 2$ Hz)	2.63 t ($J = 2$ Hz)	2.63 t ($J = 2$ Hz)
C-6 Ac	—	2.24 s	—
H ₂ -8b'	1.87 t ($J = 2$ Hz)	1.74 t ($J = 2$ Hz)	1.76 t ($J = 2$ Hz)
H ₂ -2b'	1.82 t ($J = 2$ Hz)	1.74	1.76
H ₃ -8d'	1.37 s	1.26 s	1.31 s
H ₃ -2d'	1.35 s	1.26 s	1.29 s

δ 3.97 as a singlet. The other three oxygens could be hydroxyl groups. The IR (KBr) spectrum showed the carbonyl absorption at 1650 cm^{-1} which did not alter even when the compound was methylated. The D_2O exchanged spectrum, methylation experiment and the ^1H NMR spectrum of the compound confirmed these conclusions. The absence of any signal around δ 12–14 indicated the absence of a C-1 or C-8 hydroxy group. The aromatic region of the ^1H NMR spectrum showed four protons, a singlet at δ 6.63, a multiplet at 7.27–7.34 and a *dd* at 7.73 with *J*=8 Hz and 2 Hz and 2 Hz which suggested that three of the four hydrogens were present in the same ring (with a proton having both *ortho*- and *meta*-coupling). The hydroxylation pattern was arrived at by comparison with the ^1H NMR spectral pattern of known xanthones [10] and decoupling studies. Hence the B ring of the xanthone nucleus had three hydroxyl substitutions and the other ring had one.

The positions of methoxyl and the hydroxyl groups were fixed on the basis of the sodium acetate induced shift of the xanthone [6]. Hence, the structure of BR-xanthone-B (2) was assigned as 1-methoxy-2,4,5-trihydroxyxanthone. This xanthone is hitherto unreported from *G. mangostana*. The X-ray crystallography and the pharmacological studies on the compound are in progress.

EXPERIMENTAL

Mps uncorr ^1H and ^{13}C NMR spectra were run at 360 MHz and on a 90 MHz Jeol FX 90Q instrument with solvents CDCl_3 and CD_3OD with TMS as int standard. High resolution mass spectra were recorded on a VG mass spectrometer at 70 eV at elevated temp with peak to peak data comparison. Petrol refers to bp 60–80°. Silica gel G grade (without binder) was used.

Plant material Dried fruit hulls supplied by M/s IMCOPS, Adyar, Madras 20, India, were used for the extraction.

Isolation of components from powdered fruit hulls of G mangostana Plant material (2 kg) was extracted successively with petrol (3×3 l) with C_6H_6 (3×3 l) and finally with Me_2CO (3×3 l). Petrol and C_6H_6 extracts were found to be identical on TLC and so were combined. It showed low polar components on TLC along with known compounds. CC of the combined extract (2 g) over silica gel (40 g) gave on elution with petrol– C_6H_6 (1:19) BR-xanthone-A as a mixture with some low melting waxes. Rechromatography and further purification of the above mixture yielded BR-xanthone A (R_f 0.8), as a homogenus material. Purity of the material was checked by TLC using either pure C_6H_6 or C_6H_6 – MeOH (100:1) for development.

The gummy solid from the Me_2CO extract after careful CC using silica gel gave mangostin (eluent C_6H_6 –petrol 1:1, mixture of gartamins). Elution with C_6H_6 – CHCl_3 (1:1) gave mangostin, gartonins, the known xanthones, along with a polar material as a mixture. Separation of BR-xanthone B (greenish yellow solid) from this mixture was achieved using flash chromatographic technique over silica gel (G) without binder. The first few fractions using petrol as eluent gave a mixture of products and elution with petrol– C_6H_6 (1:1) gave the desired xanthone.

BR-Xanthone A (1) Pale yellow crystalline solid mp 181–182°. High resolution mass spectrum Found $[\text{M}^+]$ 396.16, Calc 396.15 $\text{C}_{23}\text{H}_{24}\text{O}_6$. UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ϵ), 243 (4.54), 259 (4.43), 319 (4.37) and 367 (3.85) (+NaOH), 242, 260, 376 (+NaOAc) 242, 259, 321 and 371 (+ AlCl_3) 237, 269, 343, and 411. IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} , 3400 (OH), 1640 (C=O), 1580 (aromatic). ^1H NMR (360 MHz), see Table 1. ^{13}C NMR 75.42 (s, C-8C'), 75.81 (s, C-2C'), 103.05 (s, C-8b'), 103.48 (s, C-8a'), 111.20 (s, C-2), 121.34 (s, C-8), 137.75 (s,

C-4b'), 151.51 (s, C-4a'), 153.26 (s, C-3), 154.93 (s, C-7), 160.43 (s, C-6), 160.50 (s, C-1), 182.60 (C=O) 93.93 (d, C-4), 100.43 (d, C-5) (indicating the 2 aromatic carbons having the protons) 16 (t, C-2b), 22.27 (t, C-8b'), 31.94 (t, C-2a), 32.90 (t, C-8a) 26.69 and 26.41, (q's, C-2d' and C-8d') MS m/z (rel int) 397.15 [$\text{M}+1$] (24), 396.15 ($[\text{M}]^+$ (100), 381.13, $[\text{M}-\text{Me}]^+$ (14.3), 353.10 [$\text{M}-43$] (88.7), 340.09 (35.9), 325.07 (13), 297.03 (27).

BR-Xanthone A monoacetate (1a) Compound 1 (15 mg) was acetylated under mild conditions and after the usual work-up gave a homogenous solid mp 166–167°. IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} , 3640 (–OH), 1750 (Ac), 1640 (C=O), 1580 (aromatic). ^1H NMR see Table 1.

BR-Xanthone A monomethyl ether (1b) Compound 1 (15 mg) was methylated by refluxing in dimethyl sulphate and K_2CO_3 in Me_2CO . The product was purified by CC using petrol– EtOAc (49:1) to give a white solid mp 215–216°. IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} , 3640 (–OH), 1640 (C=O), 1580 (aromatic). ^1H NMR see Table 1.

BR-xanthone B (2) Greenish yellow crystalline solid mp 308–310°. Molecular formula $\text{C}_{14}\text{H}_{10}\text{O}_6$ (high resolution mass spec). Found $[\text{M}^+]$ 274.04, calc 274.04 UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ϵ), 272 (4.38), 244 (4.53), 313 (4.19) and 357 (3.80) (+NaOH) 233, 254, 291 and 353 (+NaOAc) 210, 355 (+ AlCl_3) 222, 244, 265, 281, 341 and 412. IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} , 3300, 1650, 1590. ^1H NMR (360 MHz) δ 3.97 (3H, s, OMe), 6.63 (1H, s, ArH₃), 7.27–7.34 (2H, *m*, H-6, H-7), 7.73 (1H, *dd*, *J*=8 Hz, *J*) MS m/z (rel int) 273.04 ($[\text{M}]^+$ (100), 259.02 [$\text{M}-15$] (96.5), 231.03 (73.1), 228.04 (10.6), 137.02 (13.1).

BR-xanthone-B tetramethyl ether (2a) Compound 2 (10 mg) was refluxed with dimethyl sulphate and K_2CO_3 in Me_2CO to yield the product on usual work-up as a white solid mp 156–158°. IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} , 1650, 1590. ^1H NMR (360 MHz), δ 3.9–4.1 (12H, or s, OMe), 6.9 (1H, s, ArH₃), 7.2–7.4 (2H, *br*, H-6, H-7). MS m/z (rel int) 316.1 (23.5%), 301.15 (75.5%), 127.3 (13.7%), 258 (18.7%), 151.05 (32.1%), 149.05 (33.7%), 129.1 (16.0%).

Acknowledgements—The authors thank Dr V N Rama-chandran (Department of Chemistry, New University of Ulster, Northern Ireland, UK), Dr Geetha Gopalakrishnan (Department of Chemistry, University of Alberta, Edmonton, Canada) and Dr R Balasubramanian (Department of Organic Chemistry, University of Madras) for the high resolution ^1H NMR and MS data. One of us (KB) acknowledges University Grants Commission, New Delhi for the financial assistance.

REFERENCES

- 1 Jones, W D, Albrecht, W L, Monro, N L and Stewart, K T (1977) *J Med Chem* **20**, 594
- 2 Kupchan, S M, Steelman, D R and Snedan, A J (1980) *J Nat Prod* **43**, 296
- 3 Sultanbawa, M U S (1980) *Tetrahedron* **36**, 1465
- 4 Banerji, N, Hase, T A, Mazumdar, P C, Sarkar, K K, Sen, A K and Uusvuouri, R (1981) *Phytochemistry* **20**, 183
- 5 Banerji, N, Hase, T A, Mazumdar, P C, Sarkar, K K, Sen, A K and Uusvuouri, R (1982) *Phytochemistry* **21**, 1747
- 6 Stout, G H and Yates, P (1958) *J Am Chem Soc* **80**, 1961
- 7 Kirtany, J K, and Pakink, S K (1975) *Indian J Chem* **13**, 104
- 8 Cotterill, P J and Scheinmann, F (1975) *Chem Comm* 664
- 9 Gunasekara, S P and Sultanbawa, M U S (1975) *J Chem Soc Perkin I*, 2215
- 10 Jackson, B Locksley, H D and Schienmann, F (1967) *J Chem Soc (C)*, 2500